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Abstract

Throughout the central nervous system, information about the outside world is represented collectively by large groups of
cells, often arranged in a series of 2-dimensional maps connected by tracts with many fibers. To understand how such a circuit
encodes and processes information, one must simultaneously observe the signals carried by many of its cells. This article
describes a new method for monitoring the simultaneous electrical activity of many neurons in a functioning piece of retina.
Extracellular action potentials are recorded with a planar array of 61 microelectrodes, which provides a natural match to the flat
mosaic of retinal ganglion cells. The voltage signals are processed in real time to extract the spike trains from up to 100 neurons.
We also present a method of visual stimulation and data analysis that allows a rapid characterization of each neuron’s visual
response properties. A randomly flickering display is used to elicit spike trains from the ganglion cell population. Analysis of the
correlations between each spike train and the flicker stimulus results in a simple description of each ganglion cell’s functional
properties. The combination of these tools will allow detailed study of how the population of optic nerve fibers encodes a visual

scene.
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1. Introduction
1.1. Retina

The vertebrate retina is a layered neural network,
about 200 pm thick, that lines the posterior half of the
eyeball (Rodieck, 1973; Levick and Dvorak, 1986;
Dowling, 1987). It converts the visual image generated
by the eye’s optics into a pattern of neural activity,
processes this signal to extract certain features of inter-
est to the organism, and transmits the result of these
computations through the optic nerve to the brain. The
retina contains 5 major types of neurons (Fig. 1). The
rod and cone photoreceptors are connected to bipolar
cells as well as horizontal cells. Bipolar cells, in turn,
make synapses with amacrine cells and retinal ganglion
cells, whose axons form the optic nerve. Information
flowing through the network in the vertical direction,
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from photoreceptors through bipolar cells to retinal
ganglion cells, is modified by lateral interactions medi-
ated by the horizontal and amacrine cells.

The retina offers several advantages for the study of
neural processing. It constitutes a well-defined neural
circuit the general function of which is well known. It
can be removed from the eye without damage to inter-
nal connections, and continues to function in vitro for
many hours. The retina’s natural input, a pattern of
light, is easily controlled. The retina also generates a
clearly defined output, namely action potentials in the
ganglion cell axons, which form the optic nerve. While
these features have made the retina a favorite object of
neurophysiological investigations, most of the work up
to now has focused on the properties of individual
neurons. However, even local visual processing involves
the interaction of a large number of retinal neurons.
The result of these operations is transmitted to the
brain in a massively parallel form: the optic nerve in
man contains about 1,000,000 fibers. Therefore, it is
important to determine how cells within the retinal
network communicate and how the nerve impulses in
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the population of retinal ganglion cells collectively
encode the visual stimulus. This requires recording the
simultaneous electrical signals of many neurons.

1.2. Multi-neuronal signals

The cell bodies of the retinal ganglion cells lie in a
2-dimensional layer near the inner surface of the retina.
By placing an isolated retina on a flat microelectrode
array, we have succeeded in recording simultaneously
the extracellular action potentials of up to 100 retinal
ganglion cells in an area of 0.5 mm diameter. This
represents a significant fraction of the retinal output
over this region (Meister et al., 1989, 1991a). Recently,
this method has been applied to study the role of
spontaneous electrical activity in the development of
the mammalian visual system (Meister et al.,, 1991;
Wong et al., 1993). Here we describe extensions of this
methodology to study how a population of retinal gan-
glion cells encodes the visual scene.

The output of the retina is carried by neurons of
very diverse functional properties. Each ganglion cell is
sensitive to light only in a small region of the retina,
the receptive field, the center of which is generally
located close to the cell body. Receptive ficlds of
different cells vary significantly in size, shape, and
spatial arrangement. The time course of the light re-
sponse also varies among ganglion cells. For example,
some cells are most sensitive to a rapid change in light
intensity, which produces a brief burst of action poten-
tials, whereas others can track more gradual changes in
intensity by modulating their firing rate continuously.
Finally, ganglion cells often differ in their sensitivity to
light of various wavelengths.

Thus, the response of a retinal ganglion cell gener-
ally depends on the spatial, temporal, and spectral
properties of the visual scene. These variables cannot
necessarily be treated independently: for example, the
time course and the spectral sensitivity of the light
response often depend on spatial location within the
receptive field. On the other hand, most species appear
to have only a finite number of different ganglion cell
types. Neurons within one functional class differ only
in the spatial positions of their receptive fields. Hart-
line (1938) distinguished retinal ganglion cells by the
sign of their response to a step change in the light
intensity: ON cells fired primarily as the intensity in-
creased, OFF cells when it decreased, and ON/ OFF
cells fired briefly in response to both transitions. These
basic classes are found in most every retina studied to
date. In addition, ganglion cells have been character-
ized by the time course of the response and by the
degree of linear spatial summation in their receptive
field. This has led to the identification of the X- and
Y-types in the cat retina; both types come in the ON-
and the OFF-variety. In the monkey retina, a some-

Fig. 1. Schematic diagram of the vertebrate retina on a microelec-
trode array, showing photoreceptors (P), horizontal cells (H), bipolar
cells (B), amacrine cells (A), and ganglion cells (G).

what similar subdivision into P- and M-types is now
commonly accepted.

In studying the collective activity of the ganglion cell
population it is essential to recognize such basic func-
tional distinctions between individual neurons. Cells of
different types may be expected to transmit informa-
tion about different aspects of the stimulus, and proba-
bly play different roles in the overall representation of
the visual scene. By first identifying each neuron’s
receptive field and sorting the cells into smaller func-
tional classes one can hope to reduce the combinato-
rial complexity of the joint firing patterns among 100
neurons.

1.3. Measuring multiple receptive fields

The common procedure for determining a ganglion
cell’s functional properties is tailored to single-neuron
recording: One monitors the cell’s firing while waving a
large spot of light across the retina, thus coarsely
locating the receptive field. This area is then probed
more finely with a flashing spot of light, which might
vary in size, intensity, flash duration, and wave length.
The flashes used to probe the receptive field of one
cell may not be effective in driving other ganglion cells,
even those nearby. To characterize each ganglion cell
recorded by the electrode array, one would have to
perform this procedure sequentially, clearly an ineffi-
cient use of experimental time. Rather, one wants a
stimulus that can simultaneously activate many gan-
glion cells to reveal their response properties. These

. considerations have led us to use a random flicker

display. A square grid of pixels is projected onto the
retina, and the color and intensity of each pixel are
randomly and independently modulated in time. One
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can view this as an extension of the classical method, in
that the stimulus contains many small spots that flicker
independently with varying frequencies and colors.
Such a display has been called a “white-noise” stimu-
lus, since it contains power at all spatial and temporal
frequencies up to the cut-off frequency imposed by the
display device. This stimulus elicits strong responses
from most retinal ganglion cells. The recorded spike
trains can then be correlated with the random stimulus
sequence to determine which features of the visual
display caused each ganglion cell to fire. Similar meth-
ods have been used previously to map the receptive
fields of visual neurons during single-unit recording
(Mizuno et al., 1985; Jones and Palmer, 1987; Reid and
Shapley, 1992). As detailed below, the unbiased flicker
stimulus provides a powerful tool in multi-neuron
recording, as it allows a simultaneous measurement of
the spatial, temporal, and spectral response properties
of all the recorded ganglion cells in about 1 h.

2. Experimental methods
2.1. Preparation of the retina

Dissection and electrical recording are performed in
Ringer’s solution, buffered with bicarbonate, and equi-
librated with a mixture of 95% O, and 5% CO,. For
amphibian retinae, the medium contains (in mM): 110
Na(l, 2.5 KCl, 1.6 MgCl,, 1.0 CaCl,, 22 NaHCO,;, 10
D-glucose; for mammalian retinae, the medium con-
tains (in mM): 124 NaCl, 5 KCl, 1.15 KH,PO,, 1.15
MgSO,, 2.5 CaCl,, 25 NaHCO;,, 10 p-glucose. After
enucleation of the eye, the eyeball is hemisected with
fine scissors or a razor blade, separating the cornea
and lens from the posterior half. The eyecup is rapidly
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Fig. 2. A: plan view of the electrode layout. B: schematic cross-sec-
tion of an electrode array, not to scale.

drained of vitreous by inverting it on filter paper. In
Ringer’s, the retina is separated from the pigment
epithelium with fine forceps, working from the edge of
the eyecup towards the optic nerve head. Cutting the
nerve allows the retina to be separated from the eye-
cup. Any remaining vitreous that adheres to the retinal
surface is removed with tweezers. Finally, a piece about
3 mm in diameter is cut for transfer into the recording
chamber described below.

2.2. Electrode array

Electrical recordings were obtained with the elec-
trode array designed by Pine and Gilbert (1982). The
arrays were made at Caltech and at the Stanford
Center for Integrated Systems, following procedures
developed by Regehr et al. (1989). The substrate is a
rectangular glass wafer with dimensions 40.4 mm X 24
mm X 0.44 mm. A region of 0.5 mm diameter at the
center of the wafer bears an array of 61 passive elec-
trodes, each 10 um in diameter, spaced 70 pwm apart
(Fig. 2). Conducting leads of indium tin oxide (Gross et
al., 1985) run from the electrodes to the long edges of
the wafer, where contacts are made to preamplifiers.
The entire surface of the wafer, except for the elec-
trodes and the edge contacts, is insulated by a film of
polyimide. To reduce the impedance of the electrodes,
they are coated galvanically with platinum black (Re-
gehr et al., 1989), resulting in a typical impedance of
100 k{2 at 1 kHz.

The electrode array pictured in Fig. 2 has a diame-
ter comparable to the lateral range of information flow
in the retina; thus it can potentially sample the results
of all the neural interactions occurring in the overlying
network. The electrode spacing is about 2—-3 times the
distance between neighboring ganglion cells in the
amphibian retina or the peripheral mammalian retina.
We have recently made arrays with different electrode
geometries, including a linear layout of 32 X 2 elec-
trodes spaced 60 um apart and a dense square array of
8 X 8 electrodes spaced 30 wm apart.

2.3. Recording chamber

The glass wafer carrying the electrode array forms
the bottom of a chamber that allows electrical record-
ing from the ganglion cell layer, microscopic observa-
tion, superfusion with Ringer’s, temperature control,
and imaging of optical stimuli onto the photoreceptor
layer (Fig. 3). A plastic ring glued onto the wafer forms
the wall of the chamber. A loop of platinum wire lining
the inside of this ring connects to one of the edge
contacts and serves as a reference electrode. The piece
of retina is transferred to the fluid-filled chamber and
positioned over the electrodes with the ganglion cell
layer facing down. A ring-shaped frame holding a
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tightly stretched piece of dialysis membrane is then
placed into the chamber over the retina. This mem-
brane fixes the retina in place, holding the ganglion
cell bodies within about 10 wm of the electrodes. It is
optically transparent and very permeable (50 kDa
molecular weight exclusion limit), allowing rapid ex-
change of ions and nutrients between the retina and
the overlying pool of Ringer’s medium. The frame
holding the membrane rests on mylar spacers glued to
the bottom of the chamber so that the retina is not
compressed. The fluid in the chamber is changed con-
tinuously. Oxygenated medium flows into the chamber
through glass tubing, maintaining continuous electrical
contact between the fluid in the flow line and in the
chamber. Fluid is removed from the other side of the
chamber by suction from the surface through a beveled
glass tube connected to a vacuum line via polyethylene
tubing. Moistened O,/ CO, is blown over the top of
the chamber. For work with mammalian retinae, the
chamber and its surroundings are heated with a warm
air gun blowing from below the e¢lectrode array. In
addition, the saline is heated by passing current through
a coil surrounding the inflow tubing and the tempera-
ture is monitored with a small thermistor near the
bottom of the chamber. Under these conditions, one
can record stable light responses from retinal ganglion
cells for over 8 h.

A

2.4. Visual stimulation

Dynamic visual stimuli are generated on a color
monitor (Apple 13” RGB Display) driven by a com-
puter (Apple Macintosh Ilci). This image, demagnified
by a factor of 80, is projected onto the retina in the
recording chamber with a mirror and a 5 X objective. A
glass coverslip at the top of the recording chamber
provides the flat interface required to produce a sharp
image on the retina. The preparation is viewed from
below using an inverted microscope, taking advantage
of the fact that the electrode array, except for the
electrodes themselves, is optically transparent. Thus,
one can focus the projected visual stimulus while si-
multaneously observing the retina and the electrodes.
When dark adaptation is important, infrared illumina-
tion and an infrared-sensitive video camera are used to
view the preparation.

The color monitor can generate a wide variety of
spatial, temporal, and spectral patterns. An individual
screen pixel illuminates a 5 wm spot on the retina,
providing spatial resolution sufficient to stimulate sin-
gle photoreceptors. The monitor’s refresh rate of 67
Hz provides adequate temporal resolution for the am-
phibian retina, though it probably does not explore the
full bandwidth of mammalian retinae (Rodieck, 1983).
The monitor provides intensity contrast up to a factor
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Fig. 3. A: sectional diagram of the recording chamber mounted on the stage of an inverted microscope. The electrode array forms the bottom of
the chamber (C) and rests inside a rectangular cutout in the printed circuit board (P), supported by a metal frame (M). Microscope objectives are
used to image the visual stimulus (S) and view the preparation from below (V). Continuous superfusion with Ringer’s medium is provided
through the inlet (I) and outlet (O) tubes. B: detailed section through the recording chamber perpendicular to the view in (A). A ring-shaped
frame (F) with the O-ring (O) serves to stretch a piece of dialysis membrane (M). This assembly rests under its own weight on spacers (S) and
holds the piece of retina (R) in place against the chamber bottom. A loop of platinum wire (W) is the reference electrode. The electrode voltage
signals are transmitted from the edges of the electrode array to the adjacent printed circuit board by a strip of zebra rubber (Z).
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of 200, more than the range found in most natural
images. The spectral composition of the stimulus is
varied by modulating the three guns of the color moni-
tor independently. We calibrate the emission spectra of
the three phosphors against the programmed gun val-
ues using a spectrophotometer (EG & G Gamma Scien-
tific), as described by Brainard (1989).

To change the visual display instantaneously from
one video frame to the next (0.015 s on this monitor),
the software running the stimulator makes use of “color
table animation” (Savoy, 1986): In video memory, the
state of each screen pixel is determined by an 8-bit
number which provides an index into a look-up table
containing 256 different colors. By changing the entries
of this look-up table, one can alter the screen image
much more rapidly than by rewriting the contents of
video memory for the entire screen. Using the Macin-
tosh video system, this method limits the display to 254
fixed regions the gun values of which can be changed
at will. Most traditional visual stimuli, such as flashing
spots, moving bars, or traveling sinusoid gratings, are
easily implemented within this framework. The method
also lends itself to generating a random flicker stimulus
for white-noise analysis. For this purpose, we display a
16 X 15 checkerboard of square fields. In each field,
the intensity of the red gun is chosen randomly with
equal probability from two levels. These levels can be
chosen arbitrarily within the 8-bit resolution of the
monitor; in many experiments we choose to turn the
gun either off or to maximal intensity. Similarly, two
further random numbers determine the state of the
green gun and the blue gun, and so on for every field
of the checkerboard. This produces a random checker-
board assembled from 8 possible colors. In the subse-
quent stimulus frame, all 720 gun settings are random-
ized again by drawing successive bits from a pseudo-
random sequence. These pseudorandom sequences are
generated by sequential calls to the Random() routine
of the Macintosh operating system.

The size of the individual square in the flickering
checkerboard determines the spatial resolution
achieved in measuring the receptive field; we generally
use squares of 60—100 um width. If the 16 X 15 display
does not completely cover the piece of retina in the
chamber, it is repeated periodically in the vertical and
horizontal directions. Similarly, the duration of each
stimulus frame determines the temporal resolution of
ganglion cell response properties. By necessity, stimu-
Ius frames are a multiple of the video frame period; we
generally choose 0.015 s or 0.030 s. In these experi-
ments, there is a direct trade-off between spatiotempo-
ral resolution and the time required for a measure-
ment, If the checkerboard fields are chosen too small
or the stimulus frames too short, then a retinal gan-
glion cell will effectively average in space and time over
many random stimulus values, leading to a smaller

effective stimulus modulation. Thus the cell’s firing
rate will vary only weakly, which will necessitate a
longer period of recording to achieve statistically signif-
icant measurements.

2.5. Data acquisition system

The acquisition system consists of: (1) a preamplifier
board located on the microscope stage; (2) a rack-
mounted box containing 61 main amplifiers and signal
processors; (3) a Macintosh II computer with analog/
digital interface that communicates with the signal
processors and stores and displays data for on-line
inspection.

The recording chamber is mounted on a printed
circuit board with 61 preamplifiers. Rubber Zebra
Connectors (Fujipoly, Cranford, NJ) connect the edge
contacts on the wafer to corresponding traces on the
printed circuit board. The voltage of each recording
electrode is amplified differentially with respect to that
of the reference electrode in the bath. The preampli-
fiers, with AC coupled inputs (0.2 s time constant) and
a gain of 11, provide low-impedance output signals that
pass to the main amplifiers via ribbon cable.

Fig. 4 shows signals recorded from a salamander
retina by 4 electrodes. Action potentials have a typical
amplitude of 100-200 wV, but range up to 500 wV.
The equivalent RMS noise level at the electrode is of
the order of 5 uV at a bandwidth of 2 kHz. A given
action potential is often recorded on several neighbor-
ing electrodes with the spike amplitude decreasing at
greater distance from the cell body. Conversely, a given
electrode often records action potentials from several
cells, which can be distinguished by their stereotyped
amplitude and shape. Subsequent processing and anal-
ysis decompose these analog signals into spike trains
from individual identified neurons. The large number
of channels and the need for extended continuous
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Fig. 4. Voltage traces recorded from a salamander retina by four
electrodes. The arrows and dashed lines indicate individual action

potentials that appear simultaneously on several electrodes. Positive
voltage at the electrode is plotted downward.
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recording require that the data flow be compressed at
the very outset. This is achieved by 61 dedicated signal
processors that extract action potentials from the ana-
log signals in real time and describe each spike with a
small set of parameters.

2.6. Signal processor

The signal processing hardware detects voltage
spikes in the input signals, measures their time of
occurrence, amplitude and width, and transfers these
data to the computer. The amplitude and width mea-
surements are used in subsequent analysis to distin-
guish the activity from different neurons recorded on
the same electrode. Each signal processor channel
operates independently and communicates only with
the computer. The analog input signal from the pream-
plifier is inverted, amplified with a fixed gain of 4000,
and bandpass filtered at 12 dB/ octave to a bandwidth
of 20-2000 Hz. This conditioned signal is available at
the instrument’s front panel for oscilloscope display
and analog recording. At the next stage, a Schmitt-tri-
gger circuit detects a spike when the signal crosses a
preset threshold voltage (Fig. 5). This threshold is set
individually for each channel with a D/A converter
controlled by the computer. The time of an upward
threshold crossing (time ¢,) is stored temporarily by
latching the lowest 8 bits of the system clock, a 24-bit
ripple counter with a time unit of 50 ws. Following the
upward threshold crossing, the signal is tracked by a
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peak detector circuit. When the signal returns below
the threshold value, the lowest 8 bits of the ripple
counter are latched again (time ¢,). At this time, a
status flag is set to indicate to the computer that a
spike has been recorded on this particular channel.
Simultaneously, the signal processor is temporarily dis-
connected from the analog voltage input, until the data
for this spike are retrieved.

The computer continuously polls the status flags of
all channels in a cyclic sequence, communicating
through a commercial interface board (MacADIOS 11,
GW Instruments, Cambridge, MA). If the status flag is
not set, the next channel is polled. If the flag is set, the
computer performs an A /D conversion on that chan-
nel’s peak detector output and reads the two bytes of
time information in the latches ¢, and ¢,. Then it
resets the status flag and the peak detector, reconnects
the signal processor to its analog input from the elec-
trode array, and moves on to poll the next channel’s
status flag. Once every polling cycle, the computer also
reads the highest 16 bits of the system clock to main-
tain continuous timing information over the duration
of the experiment. In the worst case, in which all status
flags are high, one cycle of polling and data transfer
from all 61 channels requires ~ 0.9 ms, so the system
can acquire spikes at a rate of over 1 kHz per channel.
This is more than sufficient to resolve action potentials
~ 1 ms wide, as long as spikes from different neurons
do not overlap in time. A 62™ auxiliary channel, iden-
tical to the others except for the absence of an amplify-
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Fig. 5. Block diagram of an individual signal processor channel. See text for description. Insets show the time course of signals during acquisition
of a voltage spike. The Clock and the 12-bit ADC are shared by all channels. Six address lines multiplex the signals between each channel and

the data bus; these addressing components are not shown.
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ing stage, is used to record signals marking external
events, for example the onset of a visual stimulus
sequence. A large variety of such external events can
be encoded uniquely with timing pulses of different
amplitude or width.

2.7. Spike acquisition software

The numbers specifying spike arrival time, ampli-
tude, and width for each channel are stored in the
computer’s memory. Qur current configuration allows
continuous acquisition of up to 2,000,000 spikes. Peri-
odically, recording is halted for a few seconds to write
these data to hard disk. Optionally, the record can be
displayed on the computer screen in the form of 61
time traces with a vertical mark denoting each action
potential. On-line software provides control over the
acquisition process, allowing the user to choose the set
of active channels, the order in which they are scanned,
and the threshold voltage for the discriminator on each
channel. Typically the threshold is set just above the
electrode’s noise level, determined by recording from
the fluid-filled chamber before mounting the retina.
Finally, the recording software also triggers the optical
stimulator.

2.8. Spike sorting

The first stage of off-line analysis sorts the 61 se-
quences of action potentials with different shapes into
trains of spikes originating from single neurons and
estimates the location of each neuron over the elec-
trode array. To discriminate spikes from different cells
on a given electrode, the spikes are displayed on a
scatter plot of amplitude vs. width. Well-resolved ac-
tion potentials in the spike train produce clusters in
this display (Fig. 6). Each cluster is representative of a
characteristic spike shape and can be assigned to a
separate neuron.

Currently, spike sorting is performed manually,
through a graphical interface with the analysis soft-
ware. Since spikes from a given neuron may appear on
several nearby electrodes, it is advantageous to assign
the most clearly resolved action potentials first, and to
remove any duplicate recordings of these spikes from
the scatter plots of other channels. For this purpose,
the analysis software draws a scatter plot for each
channel and presents all 61 plots on the screen simulta-
neously. The operator picks the most prominent cluster
in the display, usually the one with the largest ampli-
tude. The set of spikes in this cluster is defined by
drawing an outline around it in the width /amplitude
plane. The spikes in this group are taken to be the
action potentials generated by the first neuron. The
program then determines whether spikes from this
neuron were also recorded on other electrodes. This is
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Fig. 6. Two-dimensional histogram of spike amplitude and spike

width for 21250 action potentials recorded from a salamander retina

by one electrode. The gray level is proportional to the number of

spikes per bin. The action potentials are sorted into groups of

distinct spike shape by drawing outlines separating the distinct
clusters in this plot.

done by searching for precise time coincidences be-
tween spikes on other channels and spikes in the
defined cluster (“crosstalk spikes”). The optimal crite-
rion for time coincidence depends on the width of the
action potentials and the average spike rate; we have
typically used a + 1 ms coincidence interval. The spikes
in the defined cluster as well as their crosstalk spikes
on other channels are removed from the scatter-plot
displays. The user then returns to the global display of
scatter plots and assigns the next best resolved cluster
of action potentials. Thus, the analysis proceeds se-
quentially to signals of smaller and smaller amplitude.
Since the lower amplitude crosstalk signals recorded
on neighboring channels are removed from considera-
tion, clusters from new neurons in the low-amplitude
regime become progressively sharper. In this manner,
one can eventually distinguish signals from 50 to 100
neurons. The spatial location of a neuron is estimated
as the weighted average of the electrode locations
where it was recorded, with each weight proportional
to the respective spike amplitude. For each identified
neuron, this stage of the analysis yields a spike train,
consisting of a set of spike arrival times, as well as an
estimate of the cell’s position over the electrode array.

Further analysis refines the spike sorting. ‘

(1) Two neurons that generate very similar spike
shapes on a given channel might form a single cluster
in the width / amplitude plane, and thus be defined as
only one cell. This situation can be detected by com-
puting the spike train’s autocorrelation function: the
average firing rate as a function of time after an action
potential. If the spike train derives from a single neu-
ron, the autocorrelation function should show an obli-
gatory silent interval following each action potential,
representing the cell’s refractory period. Two or more
neurons firing independently will produce a spike train
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without a refractory period. In practice, the low-ampli-
tude clusters in width / amplitude space are generally
less easily resolved from each other and more likely to
contain contributions from more than one neuron.
Such multi-unit spike trains are still useful for certain
types of analysis (Meister et al., 1991b).

(2) One neuron might generate action potentials of
different shapes, thus forming two distinct clusters in
width / amplitude space. This may occur when a neu-
ron fires rapid bursts of spikes separated by only a few
milliseconds. During such a burst, the spike amplitude
often decreases, due to partial inactivation of the spike
generating mechanism. This situation can reveal itself
when two neuron definitions appear at the same com-
puted spatial location, since spikes from the same cell
will be recorded with the same amplitude ratios on
neighboring channels. The occurrence of bursts can
then be confirmed by crosscorrelating these two spike
trains.

(3) Occasionally, the recorded spikes derive from
axons. Axonal action potentials are recognizable by
their characteristic triphasic waveform with an initial
positive-going phase, due to outward capacitive current
that depolarizes the membrane of the fiber in front of
the active region. In contrast, somatic spikes begin with
a negative-going phase, due to inward current at the
cell body. Also, axonal spikes are considerably nar-
rower than somatic spikes, with a typical width of only
0.3 ms. Finally, an axonal spike can usually be recorded
on several electrodes along a linear trajectory travers-
ing the array. The relatively low conduction velocity
(0.4-1.0 m /s) of axons in the retina leads to character-
istic distance-dependent delays in the times of spike
arrival at successive electrodes. A somatic spike, on the
other hand, is recorded on only 2 or 3 neighboring
electrodes with no appreciable time delay. Thus, in-
spection of the crosstalk patterns for each defined
neuron can be used to identify these signals. By these
criteria, we estimate that about 5% of our recorded
action potentials represent axonal spikes.

Inspecting a record of the full original wave forms
often helps to classify spikes of dubious origin. For this
purpose, the amplified and filtered analog signals are
stored on an 8-channel digital recorder (Neurodata
DR-890), which successively collects signals from all 61
electrodes over the course of an experiment.

2.9. Spike train analysis

The choice of analysis methods applied to the
recorded spike trains depends entirely on the experi-
mental design. Most classical studies of sensory pro-
cessing adopt a “forward” approach: one presents a
defined stimulus, such as a flash of light, repeats this
stimulus many times, and analyzes the statistics of the
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Fig. 7. Response of a salamander ganglion cell to a spatially uniform
light flash of 2 s duration. The plot shows the cell’s firing rate as a
function of time, averaged over 100 presentations of the flash, the
duration of which is indicated by the black bar.

resulting spike trains, In this way, one can estimate the
likelihood of obtaining any neuronal output signal given
the specified sensory input. In practice, such computa-
tions have most often been limited to the first and
second moments of the spike trains. The mean firing
rate of a neuron is estimated by constructing a his-
togram of the times of occurrence of spikes, averaged
over many stimulus cycles (see Fig. 7). Similarly, the
probability for joint firing of two neurons is estimated
by a 2-dimensional histogram of spike times from both
cells. These methods are widely used (for review see
Glaser and Ruchkin, 1976).

An alternative is the “reverse” approach, where one
presents the system with a great variety of stimuli, each
presented only once. One then specifies a defined
neuronal response, such as an action potential, and
analyzes the distribution of all stimuli that caused this
response. In this way, one can estimate the likelihood
of any input stimulus given observation of the specified
neuronal output. We use such a technique to analyze
the responses to white-noise flicker stimulation. The
goal of these experiments is to determine the receptive
field of each recorded neuron. For a given cell, one
first determines which segments of the random stimu-
lus sequence elicited an action potential. Since the
overall integration time of the retina is generally less
than 1 s, we limit the analysis to the stimulus segment
of 1 s duration preceding each action potential. The set
of all such random sequences of video frames ending in
an action potential is called the “spike-triggered stimu-
lus ensemble”. These are the sequences that the neu-
ron under study has flagged as “interesting” by firing
an action potential. To determine what all these se-
quences have in common, one computes the average
over this ensemble, also called the “spike-triggered
average stimulus”. As illustrated in Fig. 8, this is the
average visual stimulus sequence presented to the
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Spike Train

Stimulus .se

Spike-triggered average

Fig. 8. Spike-triggered averaging of the random checkerboard stimu-
lus. Only a 4 X4 section of the checkerboard is shown. Each stack of
frames represents the 1-s stimulus sequence preceding an action
potential. These sequences are then aligned and averaged.

retina during the 1 s interval preceding an action
potential from the selected neuron. Formally,
if
S,(h’”’g)
= light intensity of gun g in the display

pixel (A,0) during time bin ¢

of the experiment
N, = number of spikes recorded during time bin ¢
then
S0

= spike-triggered average intensity
of gun g in pixel (A,v) at time ¢
relative to a spike
LN/Se®
L

YN,

m

For each gun, these values range between the low-
and high-intensity levels chosen during flicker stimula-
tion. The spatial, temporal, and spectral properties of
this spike-triggered average stimulus are a measure of
the stimulus features effective for exciting this cell.

3. Examples
3.1. The population response to a flash of light

In an early experiment, we surveyed the variety of
light responses among ganglion cells in the retina of
the tiger salamander (Ambystoma tigrinum). The
dark-adapted retina was stimulated with a uniform
pulse of white light lasting 2 s. This stimulus was
repeated 100 times at 10 s intervals. Fifty neurons were
identified from the recorded signals. Fig. 7 illustrates
the average light response of one cell with a histogram
of spike times relative to the onset of illumination,
pooled over 100 stimulus presentations. The ordinate is
scaled to show the cell’s average firing rate. This gan-
glion cell was silent in darkness, but began firing with a
delay of ~ 0.4 s after the light was turned on. The
firing rate then decreased gradually, and activity ceased
even before the light was turned off.

Fig. 9 shows the light responses of 12 different
neurons, plotted as in Fig. 7, along with the cell loca-
tions. This small region of retina contained ganglion
cells with widely varying response properties. Some
cells responded transiently to an increase of illumina-
tion, others to a decrease, and still others fired toni-
cally while the light was on or while the light was off.
This variety of responses is expected if each region of
the retina represents many features of the local light
pattern.

3.2. Measurement of a receptive field

Fig. 10 illustrates a ganglion cell’s receptive field, as
determined by a white-noise flicker experiment. The
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Fig. 9. A: locations, relative to the electrode array, of 50 identified ganglion cells in one preparation. B: light responses of 12 ganglion cells in the
upper right hand region of (A). The plots show the average firing rate as a function of time relative to a 2 s light flash, indicated by the bar. Each

plot is scaled to the maximal firing rate, indicated at the top.
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retina was stimulated with a flickering checkerboard
the individual fields of which measured 75 um on a
side, and the gun intensity values of which were
changed randomly every 15 ms. During 4300 s of
recording, the cell illustrated here generated 9738 ac-
tion potentials. From this spike train and the known
stimulus sequence, the spike-triggered average stimulus
was computed, as described above. Fig. 10A shows a
single frame from this time sequence, namely the aver-
age image on the retina 0.155 s before the neuron fired
a spike. There is an elongated bright region, close to
the location of the cell body. The time course of the
intensity within that region, termed the “center”, is
plotted at the top of Fig. 10B. For each gun, these
intensity values are normalized such that+ 1 and —1
correspond, respectively, to the high- and low-intensity
levels chosen for flicker stimulation; on this scale, the
time-averaged stimulus value is zero for each gun.
Moving backward in time from the action potential, the
spike-triggered average intensity increases from zero
(average) to a peak (brighter than average) at —0.15 s,
then drops into an undershoot (dimmer than average)
before settling at the zero baseline. One concludes that
the cell was excited by light within the bright elongated
region. It responded by firing an action potential on
average about 0.15 s later. The undershoot indicates
that the cell was excited most efficiently by a positive
transition from dimmer to brighter light. Finally, one
sees that the red and green guns were about twice as
effective as the blue gun, suggesting that the cell’s
sensitivity peaked in the yellow region of the visual
spectrum. From the emission spectra of the color mon-
itor and the known absorption spectra of salamander
photoreceptors we find that these ratios of sensitivities
are consistent with a dominant input to the ganglion
cell from the red-sensitive cone photoreceptors.

Time =-0.155 s

Center

The cell was also sensitive to light outside the center
region. In the surround, it was excited by a decrease in
light intensity, a sensitivity opposite to that of the
center. Note that light in the surround acted with a
somewhat longer delay. The peak of the spike-tri-
ggered average occurs at about —0.20 s, probably
reflecting additional processing delays in the horizontal
cell layer. Although individual pixels in the surround
were much less effective at generating spikes than
pixels in the center, the overall contribution of the
surround to the cell’s response was about 83% that of
the center.

By using a stimulus that is richly modulated in the
spatial, temporal, and spectral domains, one can thus
measure the ganglion cell’s functional properties in all
these dimensions. The analysis can be performed for
every recorded neuron to assess the functional compo-
sition of the ganglion cell population. Further studies
building on this approach my help to reveal how the
concerted activity in this heterogeneous population of
neurons encodes a complex visual image for transmis-
sion to the brain.

4. Discussion

We have described a new experimental method for
the study of multi-neuronal signaling in the vertebrate
retina. The essential components are: visual stimula-
tion of the photoreceptor layer with a color monitor;
parallel recording from 61 sites of a multi-electrode
array; detection and acquisition of action potentials by
a 62-channel hardware recorder; off-line spike sorting
resulting in separate spike trains from up to 100 neu-
rons; and reverse correlation analysis to measure sin-
gle-neuron response properties. Although many of
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Fig. 10. Receptive field of a salamander retinal ganglion cell, as determined from random checkerboard stimulation. A: the spike-triggered
average stimulus 155 ms before the action potential. The electrical recording location is marked by a cross. B: time course of the spike-triggered
average intensity, computed independently for the red, green, and blue guns, and averaged over all display pixels within the inner outline in (A)
(Center), and over all pixels outside the outer outline (Surround). On the ordinate,+ 1 and ~1 correspond respectively to the high and low gun

intensities used during flicker stimulation.
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these tools have been used previously, their integrated
application provides unique experimental access to a
large neuronal circuit. One can apply the retina’s natu-
ral stimulus throughout its entire dynamic range, and
simultaneously monitor a large fraction of the resulting
neural response. Such measurements should be useful
in analyzing how retinal neurons collectively process
and encode visual information. Below, we comment
briefly on general strategies for multi-neuronal record-
ing and analysis.

4.1. Multi-neuronal recording

Previously reported schemes for multi-electrode
recording have emphasized the on-line sorting of ac-
tion potentials. For example, in the system described
by Gerstein et al. (1983), the experimenter acquires a
small sample of spikes and sets the criteria for spike
sorting, analogous to the cluster outlines in Fig. 6.
Subsequently, the acquisition system uses these criteria
to sort the spikes in real time. The user continuously
monitors the performance of the sorters to guard
against slow drifts in the spike shapes. While this
approach may be useful when recording from a handful
of electrodes, it is probably not feasible to monitor 100
or more spike sorters in this way. It is also not neces-
sary for the experimenter to get immediate feedback
about each individual spike train, as there is little hope
of understanding the intricacies of concerted firing
patterns of 100 neurons in real time. We have instead
adopted a strategy for data acquisition similar to that
in particle physics experiments: real-time electronics
are used to compress the data rate by acquiring only
interesting events, here action potentials, and describ-
ing each event with accuracy sufficient for a unique
identification. The interpretation of such events is left
to off-line analysis, which typically takes very much
longer than the experiment itself. Our acquisition sys-
tem measures two spike parameters, amplitude and
width, that are widely used shape discriminators. The
additional data compression that could be achieved by
instantly sorting the spikes and discarding the shape
parameters is not essential. The implementation of this
system in hardware has proven very robust, operating
maintenance-free for the past 4 years. As the design
requires only few electronic components per channel, it
is suitable for future expansion to more electrodes.

4.2. White-noise stimulation and analysis

The random flicker display used in our experiments
efficiently explores the space of all visual stimuli along
the dimensions of space, time, and wave length. Thus it
can elicit responses simultaneously from many ganglion
cells that differ in their receptive field locations and
other response properties. Such stimuli also have a

special role in white-noise analysis (Marmarelis and
Marmarelis, 1978; Sakai et al., 1988). In this formalism,
one expresses the neural system’s output, for example
the firing rate of a retinal ganglion cell, as a functional
power series of its input, for example the time-depend-
ent distribution of light intensity. By performing exper-
iments with an input that is perfectly uncorrelated in
time, such as a random flicker stimulus, one can com-
pute the various kernels in this expansion as correla-
tion functions between the input and the output. For
example, the spike-triggered average stimulus, §¢/),
is proportional to the time-reverse of the first-order
kernel relating the light intensity to the ganglion cell’s
firing rate. If the ganglion cell’s light response were
purely a linear function of the light intensity on the
retina, this first-order kernel would provide a complete
description of the cell’s response properties. Under
this condition of linearity, one can show that the firing
rate in response to a brief flash of one gun in one field
of the checkerboard is proportional to the time-reverse
of the corresponding spike-triggered average, that is

N, = average number of spikes in time bin ¢
following a flash of gun g in pixel (i,j)
=c - 5§00

Clearly, however, the retina is not a purely linear
system. For example, many ganglion cells respond well
to a step in light intensity of either sign. Thus, the
spike-triggered average stimulus is generally not a com-
plete description of all aspects of the neuron’s re-
sponse. Nevertheless, among several hundred examples
we have never observed a neuron that was driven by
light flashes but failed to generate a significant spike-
triggered average. Apparently, all retinal ganglion cells
have a strong linear component to their light response.
Whether this linear component suffices to fully distin-
guish the major functional response types remains to
be determined.

One could extract higher-order kernels of the re-
sponse function by computing the correlation of the
firing rate with higher powers of the visual stimulus. In
fact, the white-noise approach has been praised be-
cause, in principle, a single experiment can reveal all
aspects of the stimulus-response relationship, as long
as the reverse correlation analysis is carried to a suffi-
ciently high degree. Though such a systematic expan-
sion is enticing in theory, it has not been particularly
useful in practice. In neurophysiology few attempts
have been made to compute such reverse correlations
beyond the second order. The exercise fails mostly due
to the vast number of terms that appear in the func-
tional expansion: The n'* order kernel relating a single
response variable to Ny stimulus variables is composed
of (NyNy)" terms, where N, is the number of time
bins of stimulus history included in the expansion. The
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problem is particularly severe in visual studies due to
the large number of independent variables needed to
specify the spatial, temporal, and spectral dimensions
of the visual stimulus. Analyzing multi-neuronal activ-
ity exacerbates the situation. Now the firing rates of
different neurons cannot be treated as independent
response variables. Thus a complete correlation analy-
sis must include higher-order products of the recorded
spike trains as well as higher powers of the stimulus.
For a typical neuronal circuit such as the retina, the
number of possible reverse correlation functions of
higher than first order is daunting. Therefore, it ap-
pears that the unbiased “black box” approach derived
from systems analysis will not be very helpful when
dealing with neuronal circuits of even moderate size.
Faced with the combinatorial complexity of many input
and output variables, one will need to carefully choose
which aspects of multi-neuronal activity to analyze.
These choices should be guided by a thorough under-
standing of the neuronal system at both lower and
higher levels of integration: the functional properties
of the circuit’s individual component neurons, but also
the role the circuit plays in the overall behavior of the
organism. As the technical problems of observing
multi-neuronal activity are being overcome, the devel-
opment of a conceptual framework and analytical tools
for its interpretation has a high priority for our under-
standing of neuronal systems.
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